Example: Exact Polynomials With Known Data Points


When you need to describe a set of points in terms of a function, you can use the Exact Polynomials program to determine a polynomial approximation.


Example

Find a polynomial that fits the given numbers and interpolate for x = 3.1.

x

y


0 6
1 7
2 14
3 33
4 70



Procedure

Press

Display


Select the program [ RUN ] { MTH }
{ INT } { PLY }
{ NEW }
D_UyUaDn
Enter the number of points 5 { n }
{ EOD }
D_Zy5YC0
Enter the points 0 [ x~t ]
6 { ENT }
D_8Crg5r
1 [ x~t ]
7 { ENT }
D_CQHtH3
2 [ x~t ]
14 { ENT }
D_KIbyMq
3 [ x~t ]
33 { ENT }
D_ReTJEB
4 [ x~t ]
70 { ENT }
D_nNs79N
Proceed with program { EOD } D_Ap3smx
View the coefficients { YES } D_CiNHFp
{ NXT } D_MrQcCP
{ NXT } D_j7aCC1
{ NXT } D_nxUOTl
{ NXT } D_Ap3smx
Proceed with program { NO } D_9PhmJ8
Interpolate at 3.1 { YES } 3.1
{ x }
D_4ofn8K

The polynomial is : y = 6 + 0x + 0x2 + 1x3, which can be written as: y = 6 + x3.


Back