Examples: The Q-D Method


The examples below demonstrate how to use the Q-D metho program.


Real Roots Example

Find the approximate roots of the polynomial

0 = 4x4 - 32x3 + 85x2 - 93x + 36


Procedure

Press

Display


Select the program. [ RUN ] { MTH }
{ --> } { ZRO }
{ Q-D }
D_mZYSXt
Enter the number of iterations 40 { #it } { EOD } D_fukTrp
Select new polynomial { YES } D_NaCUqB
Enter the degree of the polynomial 4 { n } { EOD } D_wOLEH1
Enter the coefficients 4 { ENT } D_29W7Zt
32 [ +/- ] { ENT } D_dLvXdU
85 { ENT } D_WHeRjk
93 [ +/- ] { ENT } D_y1DoEo
36 { ENT } D_O1H3Zp
Proceed with program { NO } D_M7oqRE
{ NXT } D_fuh22O
{ NXT } D_qwAnrw
{ NXT } D_b6gexI
{ NXT } D_hBfSuq
{ NXT } D_CLdRUH
{ NXT } D_ytsNhV
{ NXT } D_vhjmSL
{ NXT } D_1NwHCG
Compute r and s values { r/s } D_uJLSOA
Specify first and second roots to generate r and s 1 { 1st } D_eDPde6
2 { 2nd } D_ZQyudF
View r and s { EOD } D_2X6g0G
{ NXT } D_IJPObU

The approximate roots are q1, q2, q3, and q4. The actual roots are 4, 1.5, 1.5, and 1, which could be determined by using more iterations or using this program's values for r and s with the Bairstow method program.


Complex Roots Example

Find the approximate roots of the polynomial

0 = 4x4 - 20x3 + 25x2 - 45x + 36



Procedure

Press

Display


Select the program. [ RUN ] { MTH }
{ --> } { ZRO }
{ Q-D }
D_mZYSXt
Enter the number of iterations 40 { #it } { EOD } D_fukTrp
Select new polynomial { YES } D_NaCUqB
Enter the degree of the polynomial 4 { n } { EOD } D_wOLEH1
Enter the coefficients 4 { ENT } D_29W7Zt
20 [ +/- ] { ENT } D_dLvXdU
25 { ENT } D_WHeRjk
45 [ +/- ] { ENT } D_y1DoEo
36 { ENT } D_O1H3Zp
Proceed with program { NO } D_iHX1vF
{ NXT } D_fBKvqR
{ NXT } D_oDxkAE
{ NXT } D_AE7ZBt
{ NXT } D_kLAAJ7
{ NXT } D_a4EJ7O
{ NXT } D_NQs2AW
{ NXT } D_n8A0pL
{ NXT } D_FpcNKm
Compute r and s values { r/s } D_PcvcqW
Specify second and third roots to generate r and s 2 { 1st } D_zADicB
3 { 2nd } D_Pyj7HM
View r and s { EOD } D_uXib2R
{ NXT } D_Fi2ryZ

The approximate roots are q1, q2, a3, and q4. The actual roots are 4, 1.5i, -1.5i, and 1, which could be determined using this program's values for r and s with the Bairstow method program.


Back