Example 2: Q-D and Bairstow Combination
The following example demonstrates how to use the Q-D method in conjunction with the Bairstow method.
Example
Use a combination of the Q-D and Bairstow methods to find the roots of the polynomial
Procedure |
Press |
Display |
---|---|---|
|
||
Select the program. | [ RUN ] { MTH } { --> } { ZRO } { Q-D } |
|
Enter the number of iterations | 25 { #it } { EOD } |
|
Select new polynomial | { YES } | |
Enter the degree of the polynomial | 5 { n } { EOD } |
|
Enter the coefficients | 1 { ENT } | |
13 { ENT } | ||
62 { ENT } | ||
118 { ENT } | ||
97 { ENT } | ||
29 { ENT } | ||
Proceed with program | { NO } | |
{ NXT } | ||
{ NXT } | ||
{ NXT } | ||
{ NXT } | ||
{ NXT } | ||
{ NXT } | ||
{ NXT } | ||
{ NXT } | ||
{ NXT } | ||
{ NXT } | ||
Compute r and s values | { r/s } | |
Specify first and second roots to generate r and s | 1 { 1st } | |
2 { 2nd } | ||
View r and s | { EOD } | |
{ NXT } | ||
Select the Bairstow program | { NXT } { ESC } { ESC } { ESC } { BAI } |
|
Enter the number of iterations allowed | 25 { #it } | |
Enter the allowable error | .00000001 { err } | |
Proceed with program | { EOD } | |
Proceed with program | { NO } | |
Enter initial r and s | 10 { r } 29 { s } { EOD } |
|
View the real part | { Re } | |
View the imaginary part | { Im } | |
Proceed with program | { ESC } | |
{ NO } | ||
{ NO } | ||
View the roots | { EOD } | |
{ R1 } | ||
{ R2 } | ||
{ R3 } |
The roots of the reduction polynomial are -5 + 2i and -5 - 2i. The roots of the remaining polynomial are all -1.
☚ Back